2009-2010 AE Senior Thesis

Technical Report II

Structural Study of Alternate Floor Systems for University Medical Center at Princeton

Stephen Perkins-Structural Option

Advised by Dr. Linda Hanagan

Table of Contents

Descripti	ion	Page
Executive S	Summary	1
<u>Introductio</u>	on	2
Structural S	System Overview	5
Materials		7
Design Load	ds	8
Design Con	siderations	9
Floor Syste	m Design	
	Composite Steel Beam	10
	Precast Hollow Core Plank	12
	<u>Two Way Flat Slab</u>	15
	One Way Slab with Beams	16
Floor Syste	m Comparisons	
	Structural Criterion	18
	Architectural Criterion	19
	Construction Criterion	19
	Serviceability Criterion	20
Design Con	nparison	21
Summary		22
	Appendix A	23
	Appendix B	26
	Appendix C	28
	Appendix D	35
	Appendix E	38
	Appendix F	39
	Appendix G	42

Executive Summary

This report investigates alternate floor systems and compares those designs with the existing steel composite beam floor system for the New Hospital at the University Medical Center at Princeton. The three other floor systems considered are:

- a. Precast hollow core plank
- b. Two-way flat slab
- c. One-way slab with beams

The typical bay size in the New Hospital is 30'x30'. These bays are strung along the north and south facades with a row of 18'x30' bays in the middle. For this report, a typical three-bay section of the floor plan was taken in both the N-S and E-W direction and used to analyze each system.

The criterion established to effectively evaluate these floor systems is as follows: lateral system impact, foundation impact, overall weight, fire protection, depth, floor layout impact, constructability, cost, vibration, and deflection.

Floor vibration was determined to be the governing factor for the design of the slabs. This is due to the fact that the building is a hospital with patients, doctors, and machinery sensitive to slight oscillating of the floor system. Using AISC Design Guide 11, thicknesses for each system were determined according to vibration requirements. From there, the flexural and shear capacities were checked using hand calculations, RAM Structural System, ACI 318-08, and Nitterhouse specifications. RS Means was used to determine approximate costs for each system.

Upon completion of the analysis, the existing steel composite beam floor system was determined to be the best option of the four systems considered. The main advantage of this system is that it is much lighter than the other three options. Any of the other choices would have caused substantial changes to the foundation and lateral force resisting system. The composite system also performed the best under vibration, a critical requirement for a hospital.

The two-way flat slab remains a viable option simply because it is 10" shallower than the composite system and also performs well with floor vibrations. The remaining two systems are eliminated from further consideration because they require too much foundation and floor layout adjustment.

Introduction

The University Medical Center at Princeton is a new state-of-the-art medical facility currently under construction in Plainsboro, NJ. The project consists of a Central Utility Plant, a Diagnostic and Treatment Center (D&T) and a New Hospital. The site already has an existing building (Building #2) and it will be connected to the north side of the New Hospital as part of the project. The Medical Office Building (MOB) is only proposed at this time. The 800,000 square foot complex is set to be complete by the summer of 2010.

The scope of this thesis project will be limited to structural analysis and re-design of the New Hospital (Figure 1). This is the tallest portion of the complex at 92'-0" from grade to roof with a 14'-0" metal panel system above for a total height of 106'-0" above grade.

Figure 1: Overall Plan University Medical Center at Princeton

The designed floor system for the New Hospital is a composite beam with lightweight concrete slab on top of composite deck. The purpose of this report is to analyze three alternate floor systems and compare the results with the current floor system. The floor systems selected are as follows:

- 1. Precast Hollow Core Plank
- 2. Two Way Flat Slab
- 3. One Way Slab with Beams

The precast hollow core plank was chosen because it is a viable structural steel framing alternative to the composite beam. It also fits into the typical bay size for this building. A two way flat slab and one way slab with beams are practical systems which provide a comparison between the existing steel framing and concrete framing.

In order to effectively compare the four systems, a typical three-bay span in both directions was selected (see Figure 2 below). Since the moments in a two-way slab vary along the length of the frame, it was necessary to consider this large of an area (Figure 3 on next page). The final comparison however only considers a single 30' x 30' bay (Figure 4 next page).

Figure 2: Three-bay span in both directions

Figure 3: Designated frames for two-way flat slab design

It should be noted that other options were considered for this report but some were determined to not be feasible. A castellated beam system was considered in an attempt to better coordinate the MEP systems with the structural system. However the typical span length (30') is not long enough to gain full efficiency from a castellated beam. To avoid a drastic adjustment to the

column layout, this system was discarded.

Another floor system under early consideration was a post-tensioned slab. It was discovered that this floor system is not ideal for a hospital since heavy medical equipment could not easily be attached and/or removed from the floor without damaging the tendons near the top of the slab.

Figure 4: 30'x30' bay used for final comparison of all floor systems

Structural System Overview

The structural system of the New Hospital at the University Medical Center was designed by O'Donnell & Naccarato Structural Engineers using a Load Resistance Factor Design approach. It is a structural steel building with a composite floor diaphragm. Braced frames run in both directions and there are two long moment frames spanning the entire length of the building on both the south and north facades. Both the braced and moment frames are the building's main resistance to lateral load. Due to the great length of the building in the west-east direction, an expansion joint was placed at a distance from the western façade roughly equal to 2/3 of the total building length. This effectively splits the building into two different structures which behave on their own.

Foundation

Concrete piers with sizes anywhere from 18" x 18" to 48" x 78" are attached to the base of the steel columns and transmit vertical load from the superstructure to the concrete spread footings. The size of these footings varies from as small as 3'-0" x 3'-0" x 14" to as large as 21' x 21' x 50".

All footings supporting braced frame columns have mini-piles attached at their base in order to help with the high tension forces resulting from lateral loading. These piles extend to decomposed bedrock (8'-30' deep) and provide a tensile capacity of up to 150 kips. The top of all exterior footings are at a minimum depth of 42" below grade.

The floor at the base level is concrete slab-on-grade with thicknesses from 4"-12".

Huge concrete retaining walls with footings up to 17'-0" wide trace the perimeter of the foundation system.

Superstructure

The structural steel provides both gravity and lateral load resistance for the building. Columns are typically W14 while beams and girders range from W12-W27 shapes. Rectangular HSS shapes are used for the diagonal members in the braced frames and round HSS columns support the massive glass façade on the south face of the hospital. The HSS columns are intentionally exposed for architectural purposes. The floor layout is uniform and has a typical bay size of 30' x 30'.

The floor system spanning over the main area of the building is composite construction. Typically, the concrete slab is 3-1/4" lightweight concrete poured over a 3" composite metal deck. In certain mechanical and roof areas, the floor system switches to a 6-1/2" normal weight concrete due to higher loads in those areas.

The composite floor is considered to act as a rigid diaphragm and therefore able to transmit lateral forces from the façade to the braced frames. There are six braced frames in the N-S direction for each wing of the hospital. In the W-E direction, there are four braced frames and two long moment frames on the north and south sides of the building. All of these frames contribute to the lateral force resisting system.

Lateral System

The primary components of the lateral force resisting system in the New Hospital are braced and moment frames. Expansion joints are located between the D&T building and the New Hospital and within the New Hospital itself at about 2/3 the length of the building from the west façade.

On the western wing of the facility, there are six braced frames running in the N-S direction. In the W-E direction, there are four braced frames and two long moment frames. The eastern wing has a similar layout with six braced frames in the N-S and four in the W-E as well as two moment frames in the W-E.

Materials

All of the major structural materials incorporated into the design of the New Hospital at the University Medical Center are listed in Figure 5 below. The corresponding material strengths are to the right of each item.

Concrete	
Footings	f'c = 3000 psi
Retaining walls	f'c = 3000 psi
Foundation walls	f'c = 3000 psi
Piers	Min. of f'c = 3000 psi
Slab on grade	f'c = 3500 psi
Slab on metal deck	f'c = 4000 psi
Lightweight concrete	f'c = 3500 psi
Structural Steel	
Wide Flange Shapes	ASTM A992
Rectangular/Square HSS Shapes	ASTM A500 Grade B
Steel Pipe Sections	ASTM A501 or ASTM A53, Type E or S, Grade B
Angles	ASTM A36
Plates	ASTM A36
³ ⁄4" Bolts	A325 or A490
Anchor Rods	ASTM F1554 Grade 55
Welding Electrode	E70XX
Reinforcement	
Reinforcing bars	ASTM A615 Grade 60
Welded Wire Fabric	ASTM A185
Decking	
Roof deck	1-1/2" Galvanized Type B Metal Deck, 22 Ga.
Floor deck	3" LOK-Floor Composite Metal Deck, 20 or 18 Ga.
³ ⁄4" Shear Studs	ASTM A108
Masonry	
Solid Units	ASTM C90, f'c = 1900 psi
Hollow Units	ASTM C90, f'c = 1900 psi
Ivany Units	f'c = 3000 psi
Grout	f'c = 3000 psi
Brick	ASTM C216 Grade SW, f'c = 3000 psi

Figure 5: Structural materials used and design strengths

Design Loads

Live loads were obtained from ASCE7-05 and are considered to be the absolute minimum design loads allowed for a hospital (Figure 6). Most of the dead loads are assumed based upon standard industry practice (Figure 7). For a preliminary analysis such as this, these assumptions are practical. The weight of lightweight and normal weight concrete was calculated and is considered to be accurate. This calculation can be found in Appendix *C*.

Live Loads	
First Floor Corridors	100 psf
Lobbies	100 psf
Corridors above First Floor	80 psf
Patient Rooms	40 psf
Operating Rooms	60 psf
Roof	20 psf
Penthouse Floor	100 psf
Offices	50 psf
Stairs	100 psf
Partitions	20 psf

Figure 6: Live loads per ASCE7-05

Dead Loads	
Superimposed	
MEP	8 psf
Ceiling	5 psf
Total	13 psf
Typical Floor	
3" metal deck	3 psf
3-1/4" LW concrete	48 psf
Allowance for steel framing	5 psf
Total	56 psf
Mechanical Roof	
3" metal deck	3 psf
6-1/2" NW concrete	100 psf
Allowance for steel framing	7 psf
Total	110 psf
Hospital Roof	
3" metal deck	3 psf
6-1/2" NW concrete	100 psf
Allowance for steel framing	6 psf
MEP	20 psf
Total	129 psf
Walls	
Curtain wall	25 psf

Figure 7: Assumed dead loads

Some of the design loads used by the designers at O'Donnell and Naccarato differed from those loads listed in the tables above. For a typical floor, the design dead load was 65 psf and the design live load was 85 psf. The design dead load for the hospital roof was 140 psf. Because this facility is a hospital it is not unusual for the designer to use higher load values in order to guarantee a safer design.

Design Considerations

In order to have a complete investigation of the floor systems considered in this report, a set of criterion was established and grouped into appropriate categories.

<u>Structural</u>	Architectural	Construction	<u>Serviceability</u>
Weight	Depth	Constructability	Deflection
Lateral system impacts	Floor plan adjustments	Cost	Vibration
Foundation impacts			
Fire protection			

The layout chosen for the floor system design is a three-bay span located on the north end of the New Hospital. This area of the floor plan is mainly patient rooms so a live load of 40 psf was used along with the universal superimposed dead load of 33 psf*.

Due to the sensitivity of patients, surgeons, and medical equipment, vibration is a significant factor in the design of floor systems for hospitals. Floor vibration affects human beings occupying the space as well as machinery. Therefore, AISC Design Guide 11 has two separate requirements for an operating room. The first requirement states that acceptable vibration for human comfort in an operating room is to be no greater than 0.25% of gravity. The second requirement originally set the maximum vibrational velocity for operating rooms at 8,000 µin/s. This standard was recently changed to 4,000 µin/s.

The design of every floor system considered in this report is governed by these vibration requirements. It is important to note that while the bays being designed are patient rooms and not operating rooms, this design standard was used in order to provide versatility within the floor plan. If the owner ever wanted to re-order the floor layout or add more operating rooms, this design standard would make that possible.

*Note: It is now acknowledged that partition weight should be included with the live load. The slab designs were already completed before this discovery and therefore the slab loading is slightly unconservative. (1.2*33+1.6*40=103.6k as opposed to 1.2*13+1.6*53=100.4k)

Floor System Designs

Composite Steel Beam

The current floor system was analyzed so there could be a proper reference for the other three systems. The composite steel beams and girders were designed under gravity loading using RAM Structural System. The member sizes determined through this analysis were very similar to the original design with some variations in beam weight and amount of shear studs needed.

The designed composite steel beam was also checked for vibration requirements. This analysis was completed by using procedures laid out in AISC Design Guide 11 and can be found in Appendix A. It was determined that the existing floor system met the requirements for human comfort and sensitive equipment (assuming a walking pace of 50 steps/min).

Figure 8: Current framing plan for composite beam floor system

Floor Map

Floor Type: Level 4

Figure 9: Composite beam and composite girder designs from RAM Structural System

Precast Hollow Core Plank

The first alternative considered is a precast hollow core plank floor system. This system was selected because it is capable of effectively spanning 30'-0" which is the typical span length for this floor layout and it can be placed on a steel frame which provides an alternative to the composite steel beam without having to change the entire structural system of the building.

Design of the hollow core plank for bending was determined to be 12" x 4'-0" with a 2" topping using product specifications from Nitterhouse Concrete Products Inc., a well-known precast concrete producer. For the vibration check, the planks were assumed to have pinned connections at the girder supports. While this plank design met the criteria for sensitive equipment, it fell short of meeting the vibration requirement for human comfort. The 12" plank will still be considered but it will not be a good system for vibration control. The vibration calculation can be found in Appendix B.

The steel girders supporting the planks were designed using RAM Structural System. The results of the design are listed in Figure 10 below.

Figure 11: Design of steel girders for hollow core plank system

The steel girders are 27" and 21" deep in their respective 30' and 18' spans. This already will be a problem for the hollow core plank system considering the plank thickness is already 12". In order for this system to be effective, the column layout will have to be squeezed tighter.

On the next page is the design chart from Nitterhouse. Highlighted in yellow is the weight of the precast member and the maximum allowable load for a 32' span. Since these hollow core planks are 4'-0" wide, all of the floor systems will be evaluated as 4'-0" strips instead of the standard unit strip.

Prestressed Concrete 12"x4'-0" Hollow Core Plank

2 Hour Fire Resistance Rating With 2" Topping

DESIGN DATA

- 1. Precast Strength @ 28 days = 6000 PSI
- 2. Precast Strength @ release = 3500 PSI
- 3. Precast Density = 150 PCF
- 4. Strand = 1/2"Ø and 0.6"Ø 270K Lo-Relaxation.
- 5. Strand Height = 1.75 in.
- Ultimate moment capacity (when fully developed)...
 6-1/2"Ø, 270K = 205.4 k-ft at 60% jacking force 7-1/2"Ø, 270K = 235.4 k-ft at 60% jacking force

- 7. Maximum bottom tensile stress is 10 √fc = 775 PSI
- 8. All superimposed load is treated as live load in the strength analysis of flexure and shear.
- 9. Flexural strength capacity is based on stress/strain strand relationships.
- 10. Deflection limits were not considered when determining allowable loads in this table.
- 11. Topping Strength @ 28 days = 3000 PSI. Topping Weight = 25 PSF.
- 12. These tables are based upon the topping having a uniform 2" thickness over the entire span. A lesser thickness might occur if camber is not taken into account during design, thus reducing the load capacity.
- 13. All load values are controlled by ultimate flexural strength or fire endurance limits.
- 14. Load values may be different for IBC 2000 & ACI 318-99. Load tables are available upon request.
- 15. Camber is inherent in all prestressed hollow core slabs and is a function of the amount of eccentric prestressing force needed to carry the superimposed design loads along with a number of other variables. Because prediction of camber is based on empirical formulas it is at best an estimate, with the actual camber usually higher than calculated values.

SAFE S	UPERIMPOSED	SEF	VIC	EL	OAE	DS				I	вс	2006	5&/	ACI	318	-05	(1.2	D +	1.6	L)
Strand								S	PA	۷ (F	EET)								
Pa	attern	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	48	50
6 - 1/2"ø	LOAD (PSF)	<mark>133</mark>	119	107	95	84	74	65	56	49	41	34						\leq	\leq	
7 - 1/2"ø	LOAD (PSF)	170	154	139	125	113	101	91	81	72	63	56	48	42		>	>	<	\leq	

2655 Molly Pitcher Hwy. South, Box N Chambersburg, PA 17202-9203 717-267-4505 Fax 717-267-4518 This table is for simple spans and uniform loads. Design data for any of these span-load conditions is available on request. Individual designs may be furnished to satisfy unusual conditions of heavy loads, concentrated loads, cantilevers, flange or stem openings and narrow widths. The allowable loads shown in this table reflect a 2 Hour & 0 Minute fire resistance rating.

11/03/08

12F2.0T

Two Way Flat Slab

The thickness of the two way flat slab was determined by vibration requirements. In order to determine the natural frequency of the slab, the deflection of the slab under load needs to be approximated.

To begin, an assumption is made stating that the slab is pinned on all four sides (which it is not but that will be adjusted later). The total deflection is equal to $\Delta cx + \Delta my$ where Δcx is the deflection of the slab along the column strip and Δmy is the deflection of the slab in the middle of the bay. Typical transverse distribution of moments in a slab will send 90% of the moment to the column strip and 10% to the middle strip.

The next step will be to assume that Δcx deflects 90% of what it would deflect as a simply supported beam and Δmy deflects 10% of what it would normally deflect as a simply supported beam. Since Δmy sees moment from both sides of the slab, that value increases to 20%. Once the "artificial" deflections are calculated, they are summed together and then multiplied by 0.40. This assumes that the slab is actually 80% rigid. This of course depends on the size of the columns but for now the assumption is made.

The final Δt is used to determine the natural frequency and eventually the necessary thickness needed to meet the vibration guidelines. It is certainly a rough approximation so the values cannot be considered exact. However, it gives a general idea of where the slab thickness needs to be and allows for comparison to other floor systems.

The rest of the slab is designed by hand. These calculations can be viewed in Appendix C.

Figure 12: Graphic for deflection of two way flat slab

One Way Slab with Beams

The deflection value for a one-way slab is assumed to be 60% of the deflection for a simply supported beam. This estimation was arrived at by evaluating the mid-span moments of a simply supported beam and a one-way slab with integral beams. The moment in the middle of a simply supported span (wL^2/8) is roughly 40% higher than the moment in the middle of a one-way slab with integral beams (wL^2/14). If the moment decreases by this amount, it is assumed that the deflection will also decrease by roughly the same amount in order to get a "ballpark" figure. Working under this assumption, the natural frequency of the slab can be determined which will lead to a minimum thickness required to meet vibration criterion. This thickness was determined to be 16". This complete calculation can be found in Appendix D.

The beams were sized using the CRSI Handbook. Even though there are no exterior beams in the bays selected to be designed, the exterior beams were designed anyway. Also note that f'c=4000 psi for these charts. The assumption made in the hand calculations is that f'c=5000 psi. Therefore designing off of this chart is conservative.

Figure 13: Design table for beams at exterior spans from CRSI manual

b b BOTTOM $\frac{1}{3}$ $\frac{1}{100}$	ST	EM		BAF	iS ⁽¹⁾					1000			1	IOTA	LCA	PACITY	U-1	.2D +	1.GL ^O	1		1.00	100	200			1.1.1	0.5
In In<	5	b	BOT	TOM	Lay-	TOP		SPAN	, / _n =	16 ft		T	SPAN, <i>l_n</i> = 18 ft.			SPAN, /a - 20 fL			SPAN	6	22 R		$-\phi_{M_u}$	0)				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	in.	in.	la + 12 la	0.875	(2)		LOAD (4) kitt	STIR. TIES (5)	φT. n. kips	Al BQ.	STEEL WGT	(4)	TIES	¢۲. ft-	A? 56.	WGT	LOAD (4)	STIR. TIFS	φ.Τ. β	A∉ sų.	STEEL WGT	LOAD (4)	STIR. TIES	φ1, η	Al sq.	STEEL WGT	(6)	0 ×1
288 288 288 388 112 13 10 288 10 288 10 10 288 10 10 288 10 10 288 10 10 288 10 7 210 10 7 10 7 200 10 7 210 10 7 210 10 7 210 10 7 210 10 7 210 10 7 210 210 00 7 210 210 00 7 210 210 00 7 210 10 7 210 10 7 210 210 00 7 210 100 10			21.5		1	2#7	2.64	103E	3		110	2.09	113E	3		122	1.69	113E	3		132	1.40	113E	3	n	142	42	10
$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $		10	2#6 2#8			2#.8 2#.9	5.68 5.29	113E 3Z3A 133E	3	0.7	142 244 203	2.00	223G 128E 223G 143E	11	0.7	182 158 215 208	2.35	243C 133E 243C	11 3	0.7	201 174 237	1.94	263C 143E 263C	10 3 10	0.7	219 190 258	78 58 100	12
$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $			28.8	-		2010	6.27	323A 153BIE 323A	11 3 11	0.7	300 229 319	4.95	363A 163BeE 363A	11 3 11	0.7	358 254 358	4.01	40GA 153E 40GA	11 3	0.7	219 3/3 273 397	3.32	163E 442A 163E	3 10 3	0.7	272 410 298	100 123 100	11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2#.6		1	2#7 2#9	3.41 4.95	103E 164D 123E	4	0.8	127 241	2.60	113E 183D	4	0.8	141 187	2.18	113E 2030	4	0.8	153 208	1.80	123E 223D	3 14	0.8	167 228	59	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12	2# B			2#10	6.37	164D 134E 324A	15 4 15	0.8	289 285 476	5.03	13:SE 184D 143E	4 10 4	0.8	201 324 249	3.17	143E 204D 153E	4	0.8	221 380 275	2.62	143E 224D 163E	3 14 3	0.Å	230 396 300	79 125 101	11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	18		2#.9		1	2#11	7.84	134E 324A	4 15	0.8	311 522	5.20	144E 364A	4	0.8	345 587	5.02	154E 404A	4	0.8	410 379 651	4.15	224D 164E 224D	14 3 14	0.8	451 413 514	154 125 182	. 9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2#7 2#8		1	3#7 3#8	5.00 6.42	113E 164D 124E	6 19 5	0.9	171 289 255	3.95 5.07	123E 184D 133E	5 18 5	0.9	191 325 241	3.20 4.11	133F 204D 143E	5 18 5	0.9	211 360 205	2.64	133E 224D 153E	4 18 3	0.9	227 398 200	79 116	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		14	2#9	1# 0	1	3# 9	7.86	164D 134E 165D	19 5 19	0.9	330 309 480	6.21	184D 144E 185D	18 5 18	0.9 - 0.9	371 343 539	5.03	204D 154E 204D	18 6 18	0.9	412 377 471	4.16	224D 163E 224D	18 4 18	0.9	452 359 518	149 127 182	8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				10.0	ł	2910	0.54	2034 324A	19	0.9	354 569	1.38	144E 185D	6 18	0.9	384 680	5.59	154E 205D	5 18	0.9	422 844	4.94	164E 225D	4	0.8	461 708	149 222	7
16 2# 6 19 8 1 3440 3.44 12.1 410 10.47 12.2 10.47 12.2 10.47 12.2 10.47 12.2 10.47 12.2 10.47 12.2 10.47 12.2 10.47 12.2 10.47 12.2 10.47 12.2 10.47 12.2 10.47 12.2 10.47 12.2 10.47 12.2 10.47 12.2 10.47 12.2 10.47 12.2 10.47 12.2 10.5 15.47 6 1.37 10.47 12.2 10.5 15.2 1.5 5.00 164E 5. 4.61 151.7 24.6 1 1 24.5 1.0 6.1 105E 22 10.55 17.95 17.95 17.06 164E 5. 4.61 151.7 24.6 1 11.0 6.1 10.67 10.55 7.05 17.95 2.1 0.66 17.04 27.7 10.67 27.7 10.67 17.95 2			2# 7		1	3#7 3#8	5.03 0.50	113F 144E 123E	6 23 6	1.0	173 276 218	3.97 5.14	123E 164E 133E	6 23 6	1.0	193 313 242	3.22	123E 174E 143E	6 22 6	1.0	209 339 267	2.66	123F 194E	5 22	1.0	225 378	80 118	7
1 1 11 11 11 11 11 11 11 11 11 11 11 11		16	2#8	18.8		3#10	9.46	145E 135E 245B	23 5 23	1.0	410 403 861	7.47	164E 144E 165E	23 6 23	1.0	359 387 559	6.05	174E 154E 175E	22 6 22	1.0	390 426 608	5.00	194E 164E	22 5 72	1.0	432 464 673	151	7,
	-		48.5	18.9	1	3#11	11.02	2901A 324A	23	1.0	428 619	8.71	145E 275B	8 23	1,0	520 817	7.06	164E 175E	6 22	1.0	515 690	5.83	174E 195E	5 22	0.9	561 763	188	6

Figure 14: Design table for beams at interior spans from CRSI Manual.

Floor System Comparisons

Structural Criterion

The floor system significantly impacts the lateral force resisting system (LFRS) of a building. Since the hollow core plank system can work with a structural steel frame, the LFRS does not have to be re-configured for this system. The planks will be effective in transmitting lateral forces from the façade to the braced frames and the 2" topping will provide extra stiffness to the diaphragm. Longitudinal joints between planks can be utilized to transfer shear forces from one plank to the other.

The two-way and one-way systems will require a significant change to the LFRS of the hospital. Since the framing material is changing from steel to concrete, the steel braced frames will have to be removed. The one-way floor system has beams running in the N-S direction so there is still an option to have moment frames in that direction of the building, especially with the inherent moment connection at the beam-column intersections. It is likely that concrete shear walls will have to be designed for the two-way flat slab system since there are no beams. Shear walls will also be needed for the one-way system in the W-E direction.

Even though the concrete floor systems have a major impact on the current lateral design, they are heavier systems which make the building stiffer and able to resist wind forces more easily.

On the other hand, a heavier system will require a larger foundation. The existing spread footings are already rather large so switching to a concrete floor system might require a mat foundation in order to handle the extra building weight.

Seismic considerations must also be considered. From Tech Report I, it was determined that wind load controls the lateral design. However if the steel frame is switched out for a concrete frame, the seismic loading will increase significantly and might even lead to seismic forces controlling over wind forces.

One distinct advantage the concrete systems have over the steel systems is fire protection. Composite beam and hollow core plank floor systems will require applied fireproofing in order to obtain the necessary two hour rating where the concrete systems naturally meet that requirement.

Architectural Criterion

The width of the designed hollow core plank is 4'-0" which does not match with the typical 30' span of the current floor layout. For ease of construction and pre-fabrication of the precast planks the current bays will likely need to be reduced to 28' x 28' or increased to 32' x 32' so that the 4' plank fits evenly. This could shuffle the floor plan of the hospital a little but shouldn't have a tremendous impact.

The assumed column size for the concrete floor systems is 18" x 18" which is slightly larger than the 14" steel columns currently designed. These columns might protrude out of the interior walls forcing slight modifications to particular areas of the floor plan.

Another significant architectural consideration is the depth of each floor system. The depth of the existing composite beam system is typically just over 22". The one-way slab will require the same depth so that will have no impact on the overall height of the building. The hollow core plank actually increases the floor system depth by nearly 20". This alone practically eliminates it as a viable floor system for this building. The only way to significantly reduce the depth would be to tighten the column spacing which would create numerous architectural problems. The two-way flat slab is the only option which reduces the overall depth. It is 12" deep in the middle of the slab and 15" deep around the columns. The additional 10" per floor would result in a total decrease in building height of 5'.

Construction Criterion

The easiest floor systems to build are the composite beam and hollow core plank. With composite beam, the metal decking acts as the formwork for the concrete and there is no shoring required once the steel is erected. The hollow core plank is cast off-site and is ready to be installed when it arrives. Both concrete systems will require formwork and concrete placement which is labor intensive and much slower. The advantage for concrete is the shorter lead time as compared to steel.

Constructability doesn't necessarily equate to lower costs. The least expensive floor system of the four is the two-way flat slab at nearly \$12/SF. The composite beam is not much more at \$12.40/SF. The one-way slab and hollow core plank are the most expensive at around \$15/SF. These calculations can be viewed in Appendix G.

Serviceability Criterion

As mentioned earlier, floor vibrations controlled the design of every system considered in this report. While all systems met the requirement for sensitive equipment at 50 steps/min, only the composite beam system met the requirement for human comfort. Since vibration is not a strength issue, it is up to the designer and owner to determine how much vibration is acceptable. The bays designed were not supporting operating rooms so these requirements are not exactly applicable. However if the owner did want to rearrange the floor layout of the hospital it is a good idea to design a significant portion of the floor system to handle vibration to the same standard as an operating room.

Due to the focus on handling the vibration issue, all of the floor systems should have no issues with deflection.

Below is a matrix which lists the evaluation for each system under every criterion.

The weight determination for each system can be found in Appendix E.

	Des	ign Compariso	n	
Floor System:	Composite Beam	Hollow Core Plank	Two-way flat slab	One-way slab with beams
Lateral Impacts	n/a	Keep braced frames. Extra stiffness due to 2" topping.	Shear walls needed. Overall building stiffness. Increased seismic loads.	Shear walls with possible moment frames. Overall building stiffness. Increased seismic loads.
Weight	42.2 psf	80.13 psf	120 psf	171 psf
Foundation Impacts	n/a	Increase spread footing size. Possible mat foundation.	Increase spread footing size. Possible mat foundation.	Increase spread footing size. Possible mat foundation.
Fire Protection	Fireproof to achieve 2 hour rating.	Fireproof to achieve 2 hour rating.	No fireproofing.	No fireproofing.
Depth	6.25"	12" + 2" topping	12"	16"
Total Depth	22.25"	41"	12-15"	22"
Floor Plan Impact	n/a	Would require significant column adjustment to reduce depth.	Slightly larger columns might affect floor plan.	Slightly larger columns might affect floor plan.
Constructability	Easiest	Easier	Longer, more labor intensive	Longer, more labor intensive
Cost	\$12.40/SF	\$15.18/SF	\$11.96/SF	\$14.59/SF
Vibration	Meets all requirements.	Meets sensitive equip. @ 50 steps/min.	Meets sensitive equip. @ 75 steps/min	Meets sensitive equip. @ 50 steps/min
Deflection	No issue	No issue	No issue	No issue
Viable Alternative?	Existing	No Too much floor plan adjustment. More expensive and heavier than composite beam.	Yes Decreased floor thickness without much floor plan impact. Inexpensive and good for vibration.	No Loses to two- way slab in nearly every category. Much heavier than composite but with same depth.

Figure 15: Design comparison matrix

Summary

Upon completion of the alternate floor system study, it appears that the existing composite beam system is the best floor system for the New Hospital at the University Medical Center at Princeton. While it is 22" deep at typical locations, it is clearly the lightest system of the four considered. This has a significant impact when it comes to foundation size and seismic loading. There is extra importance placed upon weight in this case simply because the spread footings are rather large already. Moving to a heavier floor system will likely cause an entire re-design of the building's foundation.

The two-way flat slab still remains a viable option to replace the composite beam. It is 10" shallower than the composite beam and less expensive, but by only a small amount. Due to deflections being lesser in two-way slabs than one-way, it can handle floor vibrations much better than the other alternatives. While it is substantially heavier than the composite system, that weight can provide more stiffness to the building as a whole which will improve its lateral resistance. Of course, the foundation issue still exists with this system as well as a complete overhaul of the lateral force resisting system. After these adjustments have been made, it is likely to cost far much more than it does right now. For now, it still remains as a possible choice.

The precast hollow core plank system will not work for this building mainly due to initial layout of the columns and bays. Planks are better in rectangular bays where they do not have to span as long a distance. While it is easy to construct and wouldn't change the lateral system, the architectural ramifications of smaller bays or taller floor-to-floor spans is too much when there are better options already considered.

The one-way slab with beams was chosen for this study because it was thought to be better for point loading and might have an advantage with inherent moment connections at the beam-column intersections. These benefits do not outweigh the costs of a much heavier system that is more expensive and is beaten out by its concrete counterpart, the two-way flat slab, in nearly every category.

Appendix A

Tech Report II Compa	sile Beam - Vibration Check Stephe	In Perkins
CaPer D D'		
to= T/z [J SIT / WL9]	g = 386 in (s 2	
	Es = ZADOO ESI	
V	w = weight per unit length	(unlactored)
0.187 715	c span leigth	
N= Siul " / HOUGT		
De son 1381 Este		
combined (joist and girder)		
	Ap = Dip + Dgp/-	
fr= 0.13 V 3 (0; + 120)	i A	
	$\Delta_{jP} = \Delta_{0j}$	
	nett	
Ream mole	An Ma estimated is	A = RLE/96ET
	mal, all comments	1 D LOCT
30'		
mSid X22	We = 15/pst (Actual, not design)	slab: 3.25 + 3.0 = 6.25 "
	WD = 33 psf (superimposed)	120pcf (4.75"/12-) = 47.5psf
30' 16x26 16x26 16x26 16x26		deck = 3 psf
	slab width = 10'(12') = 10' 2	total = sigst
	0.4(20') = 12	
	i entire slab width is used	
wyx18w	D= Es/125E	1.42 4.2 7
A6 = 7.68 112 Ib = 301 114	F. = 57000 - F'c	
Ag = 16.20 int Ig = 1830 in"	= 4031 KS1	
do = 15.7 in	n= 29000/1.35(1031)	
dg = 25.6 in	= 5:33	
The second second		and the second
$q = 7.68 (1.5 + 15.7 12) - [120^{-}(9.75^{-})(1.5 + 15.7 12)]$	1.75 [2](533) = 11.01 - 253.9	= -1.59 [1.59 above
7.68 + (120 (4.35)/5	-33)	MIDDLE ST DECK.
Ib = 301 + 7.68 (15.7/2 + 1.5+ 1.59) = 20(4.75 5)/2(5.33) + 120(4.35)	(4.75/z + 1.59)2 ((5.33)
= 301+ 919, +201 +65.9		
= [487 in 4		
mbe (12+32+21+50(10)10 = 10166	14	
D6 = 5(1016)(304)(1728)/384(20000	(1487)(1000) =70.429"	2752 1 5 5 11 75"
46= 0.18 J J/A = 0.18 J 386/0.47	9 = 5,40Hz	Residentis e dilo
$D_{s} = 12de^{s}/(12h) = 12(4.75^{s})/12l$	5.33) = 20.11:x 1/A	

Komposile Bern- Vibration Check Stephen Perkins $D_{b} = T_{b} / S = 1487 i \pi^{4} / (0^{4}) = 148.7 i \pi^{4} / (1 + 5 = 10.0^{4})$ Effective Beam Panel width G=2.0 $B_{\delta} = (\delta (D_{2} | D_{3})^{1/4} | \delta = 30^{1}$ $= \mathbb{Z} \cdot O\left(\frac{2^{10} \cdot 11}{100} / (100.7)\right)^{1/4} (30^{\circ}) = 36.39^{1}$ Weight of beam panel W6 = (w15) 8666 = (1016 1/14) / (104) (36.41) (301) /1000 = 111 K Effective slab width 0.463 = 0.4(24)(12) = 1152 " * (articles 50'(12) = 260 ' /2 = -Bepth concrete = 3.25 + (3.012) 16.20 + (115 (3.25)/(5.33) = 239.8 - 114 475 1.5 L 86.32
$$\begin{split} \widehat{T}_{3} &= 1830 + 16.2 \left(\frac{25.6}{2} + 3-1.46\right)^{2} + 115 \left(3.75\right)^{5} / 12 \left(5.33\right) = 27 \\ &+ 115 \left(3.25\right) \left(5.25 / 2.2 + 1.46\right)^{2} / 5.33 \end{split}$$
= 1830 + 2882.9 + 62 + 667 Wy = ((1010/10) 30 + 55 = 3103 pit An = 5(3103)(304) (1728) /384(20000) (5442) (1000) = 0.358 fy = 0.18 ~ 9/A = 0.18 ~ 386/ 0.358 = 5.91 Hz $B_{g} = c_{g} \left(\frac{D_{b}}{D_{g}} \right)^{1/2} L_{b}$ $= c_{g} \left(\frac{U_{b}}{U_{q}} \right)^{1/2} L_{b}$ Wg = (W/s) B666 = (3103/24) 48.6 (30)/1000 = 189"

Composite Beam . Vibration Check Stephen Perkins Tech Report I Ag'= 19/86 (Da) = (30/36.39) (0.358) -> effectively stiffered (ran reduce) * girder span (30) is ress than beam panel width (3 Total: f_= 0.18 Jg / (Db + Ag') = 0.18 J \$86/ (0.429 + 0.205) & 4.16 Hz Lo within range of human perception $W = \frac{\Delta b}{\Delta b + \Delta g'} \times Wb + \frac{\Delta g'}{\Delta b + \Delta g'} \times Wg$: must check for walking excitation = 0.424 (0.4201 0.205) * 111 + 0.295/(0.42010.295) * 189K = 65.8 + 77.0 K = 143 " BW= 0.05(143*) ap = loe -0.15/n = 65 (e-0.55 (4.16)) = 0.0023 = 0.28 % g < 0.25 % g for operating room * Concluded that existing floor system is satisfactory for walking excitation. Standard for comparison is an operating room. If floors meet this criteria, then they will meet all criteria for other hospital spares. -> Now must consider sensitive equipment (quasi static vibration) V= Ur Delfn where Ur= Titm to Design Assumption : Weight of person walking = 18516 walking rate = 75 steps/min Fra (W = 1.5 (Fig 6.4 Alse Design Guide II) Fm=1.5(18516) = 278 16 to = "Ito = 2.5 (Fig 6.4 ABC Design Guide 11]
$$\begin{split} U_{V} &= \pi \left(278 \right) \left(2.5^{L} \right) &= 5459 \frac{16}{5^{L}} \\ \Delta_{0b} &= \frac{L^{3}}{46} E T &= \frac{50^{3} \left(1728 \right)}{46 \left(29000 \right) \left(1487 \right) \left(1000 \right)} \end{split}$$
ΔqP = 305(1788)/46(29000)(5443)(1000) = 3,08e⁻⁶ 1/16 $\Delta \rho = \frac{\Delta \delta b}{\Lambda_{eff}} + \frac{\Delta g \rho}{2} = \frac{1.13e^{-5}}{2} + \frac{3.08e^{-6}}{2} = 7.19e^{-6} \ln (16)$ V = Un Dellen = (5459) (7.190") | 4.16 = 0.00944 = 9440 win (5 * standard for operating room = 4000 plints

Appendix B

IRON KEDOLY IT	THELAST HOLLOWS LORE MARK SYSTEM Stephen REPAIRS
Fig. G.Y ABC C	esign builte 11
	Fn/W = 1.30
	Fm=1.30(185) = 241 16
	$f_0 = [[f_0 = 1, Z_5]]$
	$U_V = \pi \left(z U_l \right) \left(1 z z^2 \right) = 1 U g z^{-1/\theta} z^2$
	$V = (183) (123e^{-6}) / 6.37$
	= 0.00227 in(s/ => 2270 uin/s < 4000 uin/s
Assume 1851	6 person walking @ 75 stepsimin
	Fm Im = 1.5
	fo = 2.5
	$U_{V} \in \pi(1.5(185))(2.5^{2}) = 5404(16/5^{2})$
	V = (5449) (1280-5) / 7.78
	= 0.0000 iste - BADD wiste > UDD wiste

Appendix C

Stephen Perkins Advised by Dr. Linda Hanagan

AE Senior Thesis

Tech Report I	Two way Flat slab	System Stephen Perkins	
Min. slab thiskness			
tmin = (133	where in = 30.	0'-2(3.0) = 24.0'	
1= 24(12) /3:	3		
= 8.73 "			
12.0" > 3.73"	v ok i bon	of need to check deflection	
Francial situation		L. LE = 30.0'	
Frank A. M. 5 While I	2/0		
TIMPE H: ING - OULEL	N 10 N 10 da	at mailed = / a'	
where cn	- 61 - 130 - 00	et approxi = e o	4 = 30.0'
LN = SI	013(6) = 20.0		
W = 1.2 (120+33) + 1.6 ((40) = 24BpH = 0.24B	est a	
Mo= 0.848 (30)	(26-) /8 = 659 fr.K	0	
Frame C: LN= 26.0'			
Mo = 0.243 (24)	(262) 13 = 503 A.K		
1 J.L. J. March of C.	In Annual	9.0	
Congitudinal Distribution of 210	AC MOMENT	The P	th 62"
6.55 Mp		19.0'	
*	for interior sean	+ 1	1-1
-/		L1 = 30.	0'
absma	10.65Mp		
		Frame A	
		M== 0.26 (629) = 164 A.K.	
0.52M2		M+ = 0.52(629) = 327 A.K	
	for end and	m. = 0.70(670) = 440ft.k	
-/	-) who have	Mis = 0 6= (629) = 400 Liv	
	WIG BEOWYS	10.1 = 0.25/629 = 200 M.L	
0.26 Mb	0.70Mo	TRA COLOCAT 200 FFIK	
		Frame C	
Frame & Longitudinal Moments		Mexil = 0.26(503) = 131 Lik	
		Mer1 = 0.52 (505) = 262 fik	
* 327 270	327	Mexte = 0.70(503) = 352 fl.K	
- 164 440 489	409 440 157	Mint = 0.65 (508) = 327 A.K	
	1	Mint = 0.35 (508) = 176 flik	
Frame C Longitudinal Moment	2		
		x Le 12 = 0 -> No edge beam	s
+ 262 176	262	-c m	
- 121 202 202	327 352 126	As lely a solution	
(121 256 367		n · · · · · · · · · · · · · · · · · · ·	
		121, 24/2000	
		C. (L, - 30 = 0.8	

				1.1.1		11						
	tech Report I			wow ou	Flat Sh	n6 syste	m	Stephen	Perti	15		
	non piper a											
				AC1 13.6	.4	Transver	se D	ista bution				
	12 middle y midd	10		Frank	. C							
	-			Nevative	O oxteri	0F 5000						
	ET .			100 %	+ 15							
				- 0%	to MS							
	The start			Pacilina	1 10							
	140			60%	ince							
	Mr.			40%	to MS							
	1 KIN X			Nagalane G	a takanta	- 506.0						
				75%	10.05							
				25 %	Ja MS							
	Cohuma			C 5 /0	10 1-13							
	strip					Ac						
			501	mmary of	momen	Marine La	. 30 .	o' /s =	10.21			
				TOME A	TO	1 227	- 440	Ung 1220		IN A C IN	272	1
				M Lotor	169	1361	324	-307	- 20.4	440 43	-15	1
				m cs	-169	+19.0.2		100 10 5192	102	550 11	10 -15	4
				MMS	0	+130.8	-110	-102 + 60		10 +11	0 13	
					-							
				Frame C	Total	width =	24.0'	(5 0	17.0	W2 - 15.1	0	7
				TotalM	- 131	+ 2 6 2	-352	- 327 +171	- 3,27		262 -13	
				Mes		2157	-264	-245 +101	3 245	-264 4	1=37 -13)	
				Mas	D	+105	- 88	-82 +71		- 88 4	105 0	
	Reinforcement De	sign										
	for Column	strip	7-00	meA	-			-	From	ec		
		Ent	Ext	Ext	Int	int		Exi	Ex+	Ext	141	173
	Mu	-164	+ 19.6	-33-0	-307	+ 13 2		-131	+ 157	-264	-245	+106
	slab undth, b	120"	180	120	120"	180"		150	144~	150 .	120 "	IYM"
	eff. depth, d	13.88"	10.85	18.88"	13,88	10.88		18,13 "	60'1S.,	15131	131.13"	10.13
	Ma + 12/6	- 16.4	413.1	- 35	-30,7	+ 8.8		-13.1	413,1	-26.4	-24.5	18.85
	Nn= Muloa	-182.Z	+218	-367	-341.1	+146.7		-145.6	+174.4	-298.3	- 272.2	+117.8
	R= MN 16d2 (psi)	94.6	122.8	190.5	177	82.6		84.5	141.6	170.1	157.9	95.7
	ρ	0.0016	0.0021	0.0032	0.0030	0.000	4	0.0014	0.0024	0.0029	0.0027	6.0016
	Asrea (m2)	2.66	4.11	5.33	(4.99)	2.74		15.5	1.50	9.57	(4.25)	2.33
	Acmin (12)=0.0026t	3.60	9.32	3.60	5.60	4.32		3.60	5.46	5.60	3.60	5.46
1=6=0.44102	N = As/0.44	8.2	9.82	12.1	11.3	9.82		8.2	7.9	10.4	9.66	7.9
	Non = width / 24	ч	7.5	4	ч	7.5		4	6	ч	4	6
	the sthe	rs (9)	60	3	(12)	60		9	B	(1)	(10)	(8)
										-		
		112.0		* Mansal-	in Ara	e preste	r the	a in t	1 06	ce rein	f at 60	Hom
		3.0	s"			a greate			A	1 Leans		
											a	
		dele na	0.750	1	= 12 00			45:	151			
		1	6 750	2 -0.75	12.00		+					
		d = 12.0.	R. S. S.	2) - 0.75	- 10.88							
		1 1 10.0	0.75	10 = 15,12				L	1			
	0	ny = 10.0	our ours	10,15				10				
				_								-

calculate o for Frome A CS	
E.I	
R= pfy (1-0.59p fy / 1/2)	
0.0946 = 600 (1-0.590 (0%)	
= 60p - 424.8p2	
424.802 -600 + 0.0946 + 0	60 = V 60 - Y(UZY. 8) (0.0946)
	≥ (424.8)
	p= 0.0016
Ext 424.802-600+ 0.1228=0	
p = 0,0021	
Ext 424.902-600+ 0,1905=0	calculate p for Frame A MS
D= 0.0032	EX1 424.8p2-60p + 0.0818
123 424.8p2-60p+ 0.177=0	p = 0.0014
p = 0.0030	Ext 424.3 p2-60p + 0.0688
12 424.302-600 +0.0826=0	p= 0.0012
p= 0.0014	11 424.3p2-60p + 0.0638
	p= 0.0011
calculate p for France C CS	124.802-000 + 0.0221
	0:00009
EX4 424.8p2 - 60p + 0.0845:0	
p=0.0014	
	calculate p for France C MS
Ext 424.302-600 + 0.1416 = 0	EX1 424.8p2-60p + 0.0948
p= 0.0024	p = 0.0016
	Ext 424.802-600 + 0.079
Ext uzy.802-600 + 0.1701 = 0	6 = 0.0013
p= 0.0029	173 424.8p2-60p + 0.0748
	p = 0.0013
107 424.3p2 -60p +.1579 =0	1nt 424.8p2 -60p + 0.0632
p= 0.0027	0= 0.0011
1NA 424.862,000 +0.0421=0	

						1 516	and it is			
Reinfordenent Des										
for middle	strip	Frome	A				Provid	2C		
	EN	Ext	Ext	157	123	EX4	EX1	Re Rt	141 141	
Mu	0	130.8	-110	- 102	488	0	+105	- 88	-82 -71	>
slad width . 6	180"	(60 11			180"	144"		199 *		
ell. deoth, d	10.88"	10.98"	10.28	10,88"	0.88	10.13	10.13	10.13 "	10,13" 10	13 *
MURIZIA	0	+ 8.72	-7.33	- 6.8	+5.87	0	+ 8.75	- 7.33	-6.83 19	:33
MN= Mulon		1145.3	- 122.2	- 118,5	+97.8		+116.7	- 97.8	-97.1 +7	7.8
R= MW/62 (05)	0	81.8	68.8	63.8	55.1	D	94.8	79.4	74.8 6	5.Z
P		0.0014	0.0012	0.001	P 000.0	0	610016	0.0013	0.0013	5.00
Anna (12)		2.74	2.35	2.15	1.76	0	2.33	1.90	1.90 1	.60
Array (102)	4.32	4.32	4.32	SE. M.	4.32	3.46	3.46)	3.46	C. 46')	3.4
ismin (in)	9.82	9.32	58.0	9.82	59.82 3	7.86	7.86	7.86	7.86	7.8
NJ NJ	7.5	7.5	7.5	7.5	7.5		6	6	6	6
the form		6.				(A)		R		R

Appendix D

Tech Penoth IT	Mare Way Stake	ul Reams Sicles	Stephen Portins	
	Terre they state	COL DEGILI 24 SEGIL	Suprem Terris	
d = 16.0 - (0.75 + 0.50) =	14.75 "	ch cover =	0.75"	
		Assume bor	dia of 1.0" (conservation	ve)
As = " by (d-a/2)				
		Assume as	1,0"	
- 24.60(12)/0.9(60)(1	4.75 - 1.92)			a=10 0
= 0.3B in2				and we
		(6"	d	
check assumption				
CET		L		$\rightarrow T$
0.85t cab = Asty			12 "	
a= 0.38(6a)				
10.05(5)(12)				
= 0,45				
A A SULLING				
C AS = CTIBLICI 6.9 (60) (14.75	5-0.45/2)			
5 0 274 : ² 0 0				
- 0.318 M (8 (8)				
() A. > 9.23(12) / malkal/14.75	0.45/			
= 0.14 12 @ (1)	121			
(E)A3 = 15. BI(12) / 0.9(60)(14.52	.s)			
= 0.241x2 @ (2)				
(1)(03) P. 0 (12) 21.05 = 24 (2)	(5)			
= 0.31 int QQ				
(5) As = 13.84 (12) / 0.9 (60) (14.5	25)			
= 0.21 in c (5)				
		1 and 1		
man steel required for ski	neage and tempe	eromore cracking		
h	A			
A5 = 0.0010 %	FC (11)			
= 0.346 in2	/1			
4	need increase 1	for all contral ser	times except (3)	
			and an entry	
Shear check				
Vu = 0.296(30)	2 = 4.44 =			
@ critical section a	distance d from	face => 4.44-	0.296 (14,75/12) = 4.08	ĸ
VN= z-Jt' bd	= 27 5000 (12)(1	(4.75) = 25.0 K >	4.08 K V OK	
Arelininary design of reinforces	ment:			
Place	€6 bars @ 14° O.	C. in all sections	or slab Aze = e	D. YY IA
	(2/14) (0.44) = 0.3	577 in 2/ft > 0.341	b inelft shrinkage +	tenp
		> 0.37	in 2/17 req. for (3)	

Appendix E

Tech Re	port II		FLOOF	System	Weight	Stepher	Perkins		
			UJ24×55	(75)					
						Only a	onsidering w	eight for	one typ
						30' × 3	o' 604.		
		×26	W16 X26	V016 7.26	×26 30				
		(31)	(3,1)	(21/	(31)				
			MSIKAA	(30)					
			30'						
Compos	ile Bearn								
	steel From	ning :	55 plf (30	= ('a	650 16				
		7	4401 (30	1/2 =	66016				
			26 pif (30	") ¥ 3 ≈	234016				
				Total =	465016 =	4.65 F			
	Concrete s	slab :	120 pcf (3.	25"/12) (3	PS = ('0E)('a	250 16 = 29.2	5 ^R		
	composite	Deck :	3 psf (30)(30')	= 270016 =	2.7 K			
	Shear stud	5 : (10	165/Stud)	(131 stud	5) = 151016	= 1.31 K			
	Total Weig	W+ (K) =	38 K						
		(05) :	47.2					'a'	
							we	Anti O	
Hollow	Core Plank								
	Steel From	ning : L	0 0(f(30))	= 300	6				
			19 pif (30')	* 2520	16		W27 x 84		WZ7 VBV SK
			Total	= 2820	16 = 2.82 "				101 -0
	Hollow (d	re Plonk	: 77 psf	(30')(30')	= 6930016	= 69.3 K	1		
	total We	ight = -	72.12 = =	80,13	psf		Laura		
Two wo	W Flatslat								
	concrete s	stab :	120000 (12	"(12) (30")	(30) = 19800	0016 = 108 K			
	Total Wei	ight = 1	08 K- C 11	zo psf					
0.00	0.1	2							
CNR Way	concrete	Franing	: 12000	t (22"/12)	(¹⁸ "(z)(30')	= 9900 16 =	9.9 1		
	concrete	slab :	120 pcf	('6'(12)	(30')(30') =	144000 16=	144 "		

AE Senior Thesis

Appendix F

Vibration A	nalysis									fo	1.25
	wlive	40	psf	width	4	ft	f'c	5000	psi	β	0.05
	wdead	33	psf	span	30	ft	Ро	65	lb	Fm/W	1.3
		n									
	16 14 12									10	
Ι	11468.8	in^4		7683.2	in^4		4838.4	in^4		2800	in^4
W	640	plf		560	plf		480	plf		400	plf
wu	932	plf		852	plf		772	plf		692	plf
E	5038136	psi		5038136	psi		5038136	psi		5038136	psi
Δ	0.18	in		0.24	in		0.35	in		0.54	in
fn	8.42	Hz		7.21	Hz		6.01	Hz		4.83	Hz
ap/g	0.0024			0.0041			0.0069			0.0116	
$\Delta(\text{point})$	1.01E-05	in/lb		1.51E-05	in/lb		2.39E-05	in/lb		4.13E-05	in/lb
Uv	1180.6	lb/s^2		1180.6	lb/s^2		1180.6	lb/s^2		1180.6	lb/s^2
17	0.001415	in/s		0.002467	in/s		0.004700	in/s		0.010108	in/s
V	1415	µin/s		2467	µin/s		4700	µin/s		10108	µin/s

										fo	2.5
	wlive	40	psf	width	4	ft	f'c	5000	psi	β	0.05
	wdead	33	psf	span	28	ft	Ро	65	lb	Fm/W	1.5
			Γ	esign-for 18	5 lb perso	n w	alking at 75	steps/mi	n		
	16		14 12				10)			
Ι	11468.8	in^4		7683.2	in^4		4838.4	in^4		2800	in^4
W	640	plf		560	plf		480	plf		400	plf
wu	932	plf		852	plf		772	plf		692	plf
E	5038136	psi		5038136	psi		5038136	psi		5038136	psi
Δ	0.13	in		0.18	in		0.26	in		0.41	in
fn	9.67	Hz		8.28	Hz		6.90	Hz		5.54	Hz
ap/g	0.0017			0.0030			0.0054			0.0096	
$\Delta(\text{point})$	8.21E-06	in/lb		1.22E-05	in/lb		1.95E-05	in/lb		3.36E-05	in/lb
Uv	5448.7	lb/s^2		5448.7	lb/s^2		5448.7	lb/s^2		5448.7	lb/s^2
	0.004626	in/s		0.008066	in/s		0.015363	in/s		0.033041	in/s
V	4626	µin/s		8066	µin/s		15363	µin/s		33041	µin/s

Two Way Flat Slab Vibration Analysis										fo	1.25
	wlive	40	psf	width	4	ft	f'c	5000	psi	β	0.05
	wdead	33	psf	span	30	ft	Ро	65	lb	Fm/W	1.3
			Γ	esign- for 18	35 lb pers	on w	alking at 50	steps/mi	in		
	12			11			10			9	
Ι	6912	in^4		5324	in^4		4000	in^4		2916	in^4
W	480	plf		440	plf		400	plf		360	plf
wu	772	plf		732	plf		692	plf		652	plf
E	5038136	psi		5038136	psi		5038136	psi		5038136	psi
$\Delta(cx)$	0.36	in		0.45	in		0.56	in		0.73	in
$\Delta(mx)$	0.08	in		0.10	in		0.13	in		0.16	in
$\Delta(ext{total})$	0.18	in		0.22	in		0.28	in		0.36	in
fn	8.39	Hz		7.56	Hz		6.74	Hz		5.93	Hz
ap/g	0.0030			0.0042			0.0059			0.0083	
Δ (point,cx)	2.51E-05	in/lb		3.26E-05	in/lb		4.34E-05	in/lb		5.95E-05	in/lb
Δ (point,mx)	5.58E-06	in/lb		7.25E-06	in/lb		9.65E-06	in/lb		1.32E-05	in/lb
Δ (point,total)	1.23E-05	in/lb		1.59E-05	in/lb		2.12E-05	in/lb		2.91E-05	in/lb
Uv	1180.6	lb/s^2		1180.6	lb/s^2		1180.6	lb/s^2		1180.6	lb/s^2
V	0.001729	in/s		0.002490	in/s		0.003718	in/s		0.005797	in/s
v v	1729	µin/s		2490	µin/s		3718	µin/s		5797	µin/s

AE Senior Thesis

Two Way											
Flat Slab										fo	2.5
Vibration											
Analysis	wlive	40	psf	width	4	ft	f'c	5000	psi	β	0.05
	wdead	33	psf	span	28	ft	Ро	65	lb	Fm/W	1.5
			Ι	Design- for 18	85 lb per	son v	valking at 75	5 steps/m	in		
	12									9	
Ι	6912	in^4		5324	in^4		4000	in^4		2916	in^4
W	480	plf		440	plf		400	plf		360	plf
wu	772	plf		732	plf		692	plf		652	plf
E	5038136	psi		5038136	psi		5038136	psi		5038136	psi
$\Delta(cx)$	0.28	in		0.34	in		0.43	in		0.55	in
$\Delta(mx)$	0.06	in		0.08	in		0.09	in		0.12	in
$\Delta(ext{total})$	0.13	in		0.17	in		0.21	in		0.27	in
fn	9.63	Hz		8.68	Hz		7.74	Hz		6.81	Hz
ap/g	0.0021			0.0030			0.0045			0.0066	
$\Delta(\text{point,cx})$	2.04E-05	in/lb		2.65E-05	in/lb		3.53E-05	in/lb		4.84E-05	in/lb
Δ (point,mx)	4.54E-06	in/lb		5.89E-06	in/lb		7.84E-06	in/lb		1.08E-05	in/lb
$\Delta(\text{point,total})$	9.99E-06	in/lb		1.30E-05	in/lb		1.73E-05	in/lb		2.37E-05	in/lb
Uv	5448.7	lb/s^2		5448.7	lb/s^2		5448.7	lb/s^2		5448.7	lb/s^2
.	0.005651	in/s		0.008139	in/s		0.012152	in/s		0.018951	in/s
V	5651	µin/s		8139	µin/s		12152	µin/s		18951	µin/s

AE Senior Thesis Appendix G

Cost Analysis

С	ompos	site l	Beam
	-		

Concrete and Placement

Flacement							
Description	Quantity	Units	Material	Labor	Equipment	Total	Cost
LWC 4000 psi	9.04	СҮ	106	15.5	5.65	127.15	\$ 1,149.44

Steel Framing

Description	Quantity	Units	Material	Labor	Equipment	Total	Cost
W16 x 26	30	LF	43	2.44	1.74	47.18	\$ 1,415.40
W24 x 55	30	LF	91	3.18	1.69	95.87	\$ 2,876.10
W21x 44	30	LF	72.5	3.32	1.76	77.58	\$ 2,327.40

Steel Decking

Description	Quantity	Units	Material	Labor	Equipment	Total	Cost
3", 20 Ga.	900	SF	2.98	0.48	0.04	3.5	\$ 3,150.00

Shear Studs

Description	Quantity	Units	Material	Labor	Equipment	Total		Cost
3/4" dia 4.75" long	131	LF	0.66	0.79	0.41	1.86	\$	243.66
					Grant T	otal	\$ 11	1,162.00
					Cost per	SF	\$]	12.40

AE Senior Thesis

Hollow Core Plank

12" Plank

Description	Quantity	Units	Material	Labor	Equipment	Total	Cost
12" thick	900	SF	8.35	0.79	0.47	9.61	\$ 8,649.00

Steel Framing

Description	Quantity	Units	Material	Labor	Equipment	Total	Cost
W27 x 84	30	LF	139	2.96	1.58	143.54	\$ 4,306.20
W8 x 10	30	LF	16.5	4.06	2.9	23.46	\$ 703.80
					Grand T	otal	\$ 13,659.00
					Cost pei	r SF	\$ 15.18

Two Way Flat Slab Concrete and

Placement

1 lacement							
Description	Quantity	Units	Material	Labor	Equipment	Total	Cost
LWC 5000 psi	33.33	СҮ	111	12.05	4.39	127.44	\$ 4,247.58

Slab Formwork

Description	Quantity	Units	Material	Labor	Equipment	Total	Cost
2 use	900	SF	2.62	3.67	0	6.29	\$ 5,661.00

Reinforcing Steel

Description	Quantity	Units	Material	Labor	Equipment	Total	(Cost
#6	62	Each	6.4	7.45	0	13.85	\$	858.70
					Grand	Fotal	\$ 10	0,767.28
					Cost pe	er SF	\$]	11.96

AE Senior Thesis

One Way Slab w/

Beams

Concrete and Placement

1 100 0100 0000							
Description	Quantity	Units	Material	Labor	Equipment	Total	Cost
LWC 5000 psi	44.44	СҮ	111	12.05	4.39	127.44	\$ 5,663.43

Beam Formwork

Description	Quantity	Units	Material	Labor	Equipment	Total	Cost
12" wide, 2 use	150	SF	2.62	3.67	0	6.29	\$ 943.50

Slab Formwork

Description	Quantity	Units	Material	Labor	Equipment	Total	Cost
2 use	900	SF	2.62	3.67	0	6.29	\$ 5,661.00

Reinforcing Steel

Description	Quantity	Units	Material	Labor	Equipment	Total		Cost
#6	62	Each	6.4	7.45		13.85	\$	858.70
					Grand T	otal	\$ 13	3,126.63
					Cost pe	r SF	\$]	14.59